Supermatter Engine: различия между версиями

Материал из Chaotic Onyx
Перейти к навигацииПерейти к поиску
м
Строка 441: Строка 441:
 
<tab name="Механика TG">
 
<tab name="Механика TG">
 
</tab>
 
</tab>
 +
The Supermatter Crystal is the primary power source in most stations. A Supermatter Shard can be ordered from [[Cargo]], which works the same way, but can be moved around. Its primary features are emitting tons of radiation, making everyone who could theoretically see it hallucinate, releasing hot oxygen and plasma, heating the air around, and exploding into a singularity if you screw up. It begins inert but being hit by an object or projectile will activate it.
 +
 +
 +
== Words of Warning ==
 +
# The Supermatter is VERY DANGEROUS. Activating the Supermatter should be the last step in setting up any form of Supermatter based power! If you ordered it from cargo the crate should stay LOCKED AND SECURED until everything is ready.
 +
# You require safety gear. A full radiation suit or radiation-proof hardsuit AND meson scanners.
 +
# You need to cool the Supermatter down, or at the very least dump the hot gas into space. Note that the Supermatter itself heats up!
 +
# Anything that bumps into the Supermatter is fundamentally annihilated. Don't touch it.
 +
 +
== Mechanics ==
 +
 +
The supermatter is an extremely unstable crystal with particular properties. Here's how it behaves:
 +
 +
=== Power ===
 +
The crystal's power determines how much energy is produced each tick, and also the range and amount of radiation and hallucinations generated.
 +
 +
* Power decays over time.
 +
* Hitting the crystal with a non-physical bullet (usually emitters) will increase its power.
 +
* Power is increased every tick depending on the gas mix. This scales with the gas' temperature.
 +
* Consuming an object or mob will increase the power by a significant amount, independently from the object's size.
 +
* Power decay can be lowered or even completely prevented with CO2.
 +
* Too much power will result in dangerous sideeffects, like arcs of lightning or anomalies.
 +
 +
=== Instability ===
 +
The crystal must be kept stable if you don't want it to explode.
 +
 +
* Stability does not change by itself.
 +
* The crystal grows unstable if the gas mix is hotter than 310K. It will instead stabilize when it is cooler than 310K.
 +
* Physical bullets will destabilize the crystal, depending on the damage they do.
 +
* Large amounts of power will destabilize the crystal.
 +
* Large amounts of moles will not only destabilize the crystal but also prevent the stabilizing effect of cold gases.
 +
 +
 +
=== Gas Interactions ===
 +
Each gas has a different effect when it surrounds the supermatter crystal. The strenght of each effect depends on the percentage of it in the gasmix in the supermatter chamber.
 +
 +
[[File:Freon_canister.png]]Freon
 +
'''Safety: Extremely safe'''
 +
 +
Freon is a good emergency gas. It cools down all other gases in the loop and slowly dissipates away into nothing. It is not suitable for producing power though, because it severely lowers the power transmission rate. If the engine has enough power, it can produce freon faster than freon can dissipate.
 +
 +
[[File:N2_Canister.png]]N<sub>2</sub>
 +
'''Safety: Very Safe'''
 +
 +
N2 is a good safety gas. It actively lowers the temperature and the amount of waste gases that the supermatter crystal produces.
 +
 +
[[File:N2O_Canister.png]]N<sub>2</sub>O
 +
'''Safety: Safe'''
 +
 +
N2O reinforces the heat resistance of the supermatter crystal, allowing for much hotter setups than usual.
 +
 +
[[File:O2_Canister.png]]O<sub>2</sub>
 +
'''Safety: Dangerous'''
 +
 +
Oxygen is the gas with the best power/danger ratio. It provides a boost to power transmission without actively increasing the waste gas amount or temperature. It does however count against the safety bonus provided by N2.
 +
 +
[[File:Plasma_Canister.png]][[Plasma]]
 +
'''Safety: Very dangerous'''
 +
 +
Plasma is very similar to Oxygen but provides a much higher power boost and waste and heat penalty. The extreme pressures and volumes of gas produced by this gas are very likely to clog pipes. WARNING: The roundstart setup can not handle pure plasma setups.
 +
 +
[[File:CO2_Canister.png]]CO<sub>2</sub>
 +
'''Safety: Very dangerous'''
 +
 +
CO2 is a very dangerous gas. In low concentrations, it doesn't do much but after a certain threshold is passed, it will slowly stabilize the internal crystal charge reactions and reduce the amount of power that the crystal loses every second. In high enough concentrations this can raise the internal power to infinitely high levels. Be careful however, since increased power not only increases the amount of heat and waste, but also causes catastrophic sideeffects long before the crystal delaminates.
 +
 +
 +
=== Gas Production ===
 +
The crystal produces plasma and oxygen while it's active.
 +
 +
* Plasma and Oxygen burn if they're hot enough. This will heavily increase the temperature and reduce the oxygen percentage; if not kept under control this can end up destabilizing the crystal.
 +
* The amount and temperature of the produced gas is determined by the current crystal power.
 +
* The amount of oxygen is proportional to the temperature of the absorbed gases. Very cold gas input will result in very little oxygen.
 +
 +
=== Irradiation ===
 +
The crystal will affect nearby mobs while it's active.
 +
 +
* The range and power is determined by the current power. Being further away from the crystal also mitigates the effect.
 +
* The crystal will cause hallucinations to nearby mobs if they're not wearing meson scanners or equivalents.
 +
* The crystal will irradiate nearby mobs. A radsuit or other protective clothing can negate this effect.
 +
 +
=== Consuming ===
 +
Anything that touches the crystal will be consumed and turned into dust. No exceptions. The only way to "safely" transport a shard is to pull it, being careful to not be pushed back into it by someone else.
 +
 +
=== Collapsing ===
 +
If the crystal reaches 100% instability, it will delaminate. There are several different events that may happen when the crystal delaminates and they all depend on the state of the crystal during delamination.
 +
 +
* A crystal in a heavily pressurized gas environment with large amounts of moles will always collapse into a singularity.
 +
* A crystal that has excessive amounts of power stored inside it will cause an explosion and release several tesla energy balls.
 +
* A crystal that is neither heavily overpressurized or overcharged will simply explode.
 +
 +
== Box and Meta Station Setup ==
 +
 +
The supermatter engine on Box and Meta can be set up in many different ways and experienced engineers are encouraged to experiment. The less experienced engineers can refer to the safe guide below.
 +
 +
=== The safe beginner setup ===
 +
 +
This is an inefficient but very safe and simple setup for the engine. Stick to this until you feel that you understand the basics of this engine.
 +
 +
This guide uses a picture of the metastation engine, but the box one is functionally identical, only rotated by 90 degrees.
 +
 +
=== Step one: Safety ===
 +
 +
1. Put on an [[File:MGlasses.png]]optical meson scanner and a [[File:Radiation Suit.png]][[File:Radiation Suit Hood.png]]/[[File:L2locker.png]]radiation suit in case someone prematurely activates the supermatter crystal.
 +
 +
'''Why:''' Meson Scanners protect from hallucinations, while the suit protect from radiation. Once the engine starts, it will start emitting both.
 +
 +
<hr>
 +
<br>
 +
[[File:Supermattermeta.png|center]]
 +
 +
=== Step two: Prepare the gas loop ===
 +
 +
1. Your first step should be turning pipes on or off until they all match the pictured setup. Click a pipe to access the menu of it. Set them all to max pressure as well.
 +
 +
'''Why:''' The pump on the top puts the filtered output gas back in the loop. The pumps leading out of the N2 canisters put N2 in the loop, reducing the power generated but also reducing the temperature the crystal generates. The pumps that go in and out of the crystal chamber simply insert and take away the gas mix. The two pumps below leading to space put the gas into a cooling loop, so it'll be cold when it is re-inserted into the engine.
 +
 +
2. Make sure that the filter(green) on the left is set to "None" and the filters on the right to "O2", "Co2", "Plasma" and "None". Turn them all on and set them to max pressure as well.
 +
 +
'''Why:''' The first filter can collect plasma from the output mix into the canisters. You can optionally turn it on to produce plasma gas with the engine. The filters on the right separate the gases produced by the supermatter (O2, Plasma, Co2 from burning plasma) to keep the airmix constant. There is a loss of oxygen this way, but it is safer.
 +
 +
3. Swipe your ID at the air alarm(blue) and take a look inside the chamber. Hover your mouse over the 3 vents and 3 scrubbers(orange) and note their names. Open the air alarm menu and set the noted vents to 5000 kPA pressure and the scrubbers to '''siphon''' and extended range. The scrubbers will show an animation if they are set up to siphon correctly.
 +
 +
'''Why:''' The air alarm controls the vents (which puts gas in the chamber) and scrubbers (which take gas away from the chamber). This step makes sure they're active and working efficiently.
 +
 +
With these all done, the nitrogen should be cycling through the system and getting nice and cool.
 +
 +
=== Step three: Starting the radiation collectors ===
 +
 +
1. Open the secure storage. You will need someone with access (CE, Captain, or ask the AI) to press the button in the CE office. This gives you access to the plasma canister. [[File:Plasma Canister.png]]
 +
 +
'''Alternative''': Swipe an engineering ID on the APC to unlock it. Turn the APC off. Use a crowbar on the blast door to force it open. Return to the APC and turn turn it back on, then swipe your ID to lock it again.
 +
 +
2. Obtain six plasma tanks.[[File:Plasma tank.png]] One can be found by the radiation collectors, and up to ten more can be taken from the tank dispenser. [[File:Tank Dispenser.png]]
 +
 +
3. Fill each plasma tank with the plasma canister. First, click the canister with a plasma tank in your active hand. Then open the canister menu and set the pressure to max. Double check to see if the tank was inserted correctly, then open the valve and close it after the tank has been filled. Eject the tank.
 +
 +
'''It's very important to only open the valve if a tank is inserted, or you'll be releasing a huge cloud of flammable, poisonous plasma in the air.'''
 +
 +
4. Insert each plasma tank into a radiation collector [[File:Radiation Collector.gif]], then turn each on by clicking it with an empty hand.
 +
 +
'''Why:''' Radiation collectors become more efficient if their plasma tanks contain more plasma. If you keep the plasma tanks half-full, they won't produce enough power to fuel the station.
 +
 +
The engine is now ready to produce power.
 +
 +
=== Final step: Start the engine! ===
 +
 +
1. '''Double-check to ensure the cooling loop is active, you don't want to have an active supermatter with a pump still set to 101kPa or the vents/scrubbers inactive!'''
 +
 +
2. Head into the emitter chamber. It is on the right side of the picture above. Just click each emitter [[File:Emitter On.gif]] with an empty hand to turn them on. '''Don't stand in front of them unless you want some serious laser burns!'''
 +
 +
Congratulations! The supermatter engine is running!
 +
 +
=== Beyond the safety ===
 +
Here are some pointers and hints on how to get more power out of this engine:
 +
* Coordinate with other engineers. Don't just silently adjust gases and pumps or you might end up causing accidents or decreasing efficiency.
 +
* Higher temperatures generate more energy.
 +
* Higher amounts of oxygen moles result in more power.
 +
* There is a can of freon for emergency cooling in secure storage. Consider opening it in the engine airlock if the engine is about to go critical. You can always scrub out the freon with a gas filter.
 +
* You can pump gas from the atmos mixing loop directly into the engine by using the orange pipe.
 +
* The supermatter crystal will glow in a distinct orange color if the gas composition and pressure levels in the chamber are ideal. This will reduce the impact of heat on the generation of power.
 +
* Consider setting the first filter of the loop to plasma. The supermatter produces plasma, which can be collected and used to refill the radiation collectors if the round goes on for too long.
 +
 +
== Delta station setup ==
 +
 +
The standard power-gen with initially available equipment is a cooled radiation collector array.  The Delta station setup is the only production model on NT stations and thus will be the focus of this guide.  The engine room is centered around the Supermatter chamber and is divided into two halves. On the West side of the chamber are the extraction siphons. These lead into a capture filter and then to the cooling system. By default the system uses a space radiator setup; however a heater/cooler system is available. The gas loops north and passes over the chamber to the east side which is the primary filter and waste gas removal system. it then heads south to the gas injection system. This system can take gas from canisters(not provided) or from a gas lint that leads (by default) to the primary N2 tank.
 +
 +
Located above the chamber and gas loop is a complex array of mirrors and emitters that fire pulses to stimulate the Supermatter.  To the south of the injection area is the SMES room and to the south of the cooling area is the turbine room.
 +
 +
=== How to setup  ===
 +
# Put on your safety gear
 +
# In atmospherics turn on the N2 valve located at the south-east. Its the manual valve
 +
# Load the radiation collectors with plasma tanks and activate them. Close the radiation shutters with the button at the airlock entrance.
 +
# In the Supermatter area use the air alarm to max the vents inside the chamber and set the scrubbers to siphon.
 +
# Enter the core airlock antechamber and max both the pumps
 +
# Max and turn on the first filter Make sure its set to Nothing and then the pump to the space radiator.
 +
# Max the Primary Filter and make sure its set to N2.
 +
# Open the external N2 Line. The loop should pressurize. Don't clog the loop with gas! 300 should do.
 +
# Activate the emitters
 +
# Program the SMES system
 +
 +
=== Side projects ===
 +
* Use it as a heat and gas source for a turbine.
 +
* Experiment with other gas mixtures.
 +
* Work on the crappy pipe job.
 +
* Add more collectors and SMES
 +
* Replace the crusher!
 +
 +
== Sabotaging the supermatter ==
 +
Want to sabotage the crystal but can't figure out how to pull it off? Here are some pointers and hints:
 +
 +
=== General hints ===
 +
*'''You can break the APC of the room to stop all pipes and scrubbers from working.'''
 +
*Disable the telecomms APC with the CE console to prevent the supermatter from anouncing its status.
 +
*Cut cameras near the engine.
 +
*Instead of turning off pumps and filters, you can just set them to extremely low values instead. They'll still appear to be working.
 +
*Taking out all the engineers before attempting a delamination helps a lot.
 +
*Opening a canister of plasma in engineering and igniting it will make it a lot harder for people to fix your sabotage. Even more effective if the radiation levels are high.
 +
*Keep a flash or EMP on hand. The AI and its borgs are pretty much guaranteed to try and intervene to prevent harm.
 +
*Stay around and pretend to be helping so you can undo all the repair attempts by other people.
 +
 +
=== Regular delamination ===
 +
These are the easiest to pull off and require no special conditions. You'll want to keep the supermatter chamber very hot and full of plasma or CO2.
 +
*Use the filters near the emitter room to filter out N2 and N2O while keeping Plasma, Oxygen and CO2 in the loop.
 +
*Pump in pure plasma or burn mix from atmos.
 +
*Disable or break the cooling array. Deconstructing a single piece of the heat exchanger can be enough.
 +
*Get rid of engineering's freon supply.
 +
*Shooting guns at the crystal is extremely effective, but it's likely that you'll end up in the blast.
 +
*Disable the scrubbers once the chamber is hot enough.
 +
 +
=== Overcharged delamination ===
 +
This kind of delamination requires careful gas management but is faster, far more destructive and there's a good chance it will irridiate, burn and shock the engineers who are trying to fix it.
 +
*Ensure that only CO2 is in the supermatter chamber at all times. Filter all other gases and keep the scrubbers running.
 +
*Keep the emitters online and firing if you can.
 +
*Get as much CO2 into the chamber as possible. Larger amounts of CO2 can even compensate for the oxygen and plasma waste.
 +
*Wear as much radiation protection as you can. Consider bringing some charcoal aswell.
 +
*Try to keep radiation suits away from engineers, they won't be able to get near the overcharged engine without one.
 +
*Make sure you are wearing insulated gloves to protect yourself from the lightning arcs.
 +
*Disabling the cooling is not required. In fact, keeping the chamber cool might help you get more power.
 +
*The anomalies, gravity pulses and lightning arcs will quickly turn the engine room into a deathtrap. Make sure you have everything set up correctly before this starts happening.
 +
 +
=== Critical mass delamination ===
 +
This is by far the most difficult but also the simplest one.
 +
*Pump in as much gas as possible into the chamber.
 +
*Make sure no gas leaves the chamber. Put up walls, deconstruct scrubber pipes, do whatever possible to keep the gas inside.
 
</tabs>
 
</tabs>
  

Версия от 17:13, 24 марта 2017

Двигатель суперматерии, который находится в самой северной части станции, является главным источником энергии; в тот момент, когда станция может питаться от солнечных батарей, их настройка слишком долгая для обычного персонала.

Суперматерия - очень опасна; если она плохо настроена, то может запросто взорваться, оставив за собой огромную дыру в инженерном отсеке и всю станцию без энергии.

Техника безопасности

Вот несколько принципов безопасности при работе с двигателем:

  • Суперматерия очень опасная. Её можно тащить, но любые попытки прикоснуться, схватить, тыкаться в неё или использовать какой-либо предмет на неё (ты понял суть) приведёт к тому, что от тебя останется лишь горстка пепла.
    • Если тебе вдруг особо необходимо взаимодействовать с материей, тебе следует попросить врачей записать твои гены на случай чрезвычайной ситуации.
  • Радиация, исходящая от материи тоже опасна. Неактивное ядро не излучает радиации - поэтому можно (но не рекомендуется) работать без костюма до тех пор, пока не начнётся заряд материи эмиттером. При работе с активной материей следует носить радиационный костюм и радиационный шлем.
    • Костюмы лежат в проходе к двигателю и комнате наблюдения за материей.
    • Скафандры инженеров не защищают от радиации. Они немного защищают, достаточно, чтобы защитить вас от немедленного облучения, но лучше, по возможности, носить анти-радиационный костюм.
  • Суперматерия, даже в неактивном состоянии, может повредить глаза. Всегда следует носить MGlasses.png мезонные очки, когда работаете в отсеке с двигателем.
    • Мезонные очки можно взять в том же шкафчике, что и костюм. Но также можно взять свою пару очков из своего шкафчика. Их не обязательно включать для защиты глаз. Главное, чтобы они были надеты.
  • Лазер эмиттера очень опасен. Лучше не пересекать линию его стрельбы, пока он активен.

Принципы работы

EngineRoomSM.png

Если ты новенький в инженерном деле, или же просто единственный инженер на смену - советую сразу перейти к короткому гайду по запуску двигателя. Лишь после этого возвращайся к прочтению.

Вырабатывание энергии

Двигатель использует Термоэлектрогенераторы - ТЭГ для краткости. Левая сторона ТЭГа нагревается суперматерей, в то время как правая охлаждается при помощи радиаторов. На станции два ТЭГа, каждый из которых может предельно выдавать 500 MW энергии.

В обычном состоянии суперматерия не продуцирует тепло, но будучи активированной излучателем, находящемся в инженерном отсеке именно с этой целью, начитает излучать тепло. Поэтому, для начала нагрева, а следовательно - получения энергии, суперматерию необходимо активировать излучателем. Этот процесс называют "Запуском двигателя"

Побочные продукты работы двигателя

Активированная суперматерия продуцирует не только тепло и радиацию, а еще и кислород с плазмой (фороном). Газы из комнаты с суперматерией выкачиваются при помощи вентиляционной помпы, или же "Engine Room Vent Pump #1". Она находится справа от суперматерии. Газы эти поступают из помпы в желтые трубы, соединенные с ТЭГом, где они охлаждаются, после охлаждения попадая в синие трубы. В систему синих труб встроены два общих фильтра. Фильтры эти, по умолчанию, настроены на фильтрацию всего, кроме азота (nitrogen). Фильтры выключены в начале смены, и должны быть активированы для нормальной работы двигателя. Кислород перегружает суперматерию, а плазма (форон) - легковоспламеняема и ядовита.

После очищения газа от примесей, будучи чистым, охлажденным азотом, газ снова подается в комнату с суперматерией.

Распределение энергии

После того, как ТЭГ выработает энергию, она поступает по желтым силовым кабелям к распределителю, расположенном в углу отсека двигателя. Два СМЕСа запитываются напрямую от распределителя, являясь Главной энергосистемой станции; от него же запитаны СМЕС инженерного отсека (виден напрямую в комнате) и Главная энергосистема станции. СМЕС инженерного отсека в дополнение ко всему, выполняет те же функции, что и АПЦ инженерного отсека, питая его. Главная энергосистема обеспечивает остальную станцию энергией.

Необходимый уровень энергии для СМЕСа инженерного отсека - 70-100kW. Необходимый уровень энергии Главной энергосистемы зависит от нужд станции.

Переработка отходов работы двигателя

EngineWasteSetup.png

Комната Переработки отходов работы двигателя служит для охлаждения и хранения кислорода и плазмы (форона) полученного в результате работы суперматерии. Фиолетовые трубы являются зацикленной петлей охлаждения с интеркуллерами; они выходят прямо в космос, где газ и охлаждается. Побочные продукты никогда не попадают в петлю - петля наполнена теплоносителем, обычно углекислым газом (CO2, но вообще сработает любой газ). Охлаждающий газ необходим для нормальной работы двигателя.

Фиолетовые трубы справа содержат побочные продукты работы двигателя.

Странные серые штуки в комнате со знаками опасности - теплообменники. Они охлаждают нагретые побочные газы путем циркуляции в петле интеркуллеров.

Стоит помнить, что если вы настроили фильтрацию кислорода и плазмы, стоит так же настроить и их охлаждение, для безопасного использования.

Мониторинг работы двигателя

EngineMonitoringSetup.png

Комната наблюдения за работой двигателя находится прямо над двигателем, в ней расположены пять консолей, а так же три кнопки для контроля работы двигателя.

Консоли на картине, слева направо:

  • Engine Cooling Control: Показывает статус двигателя, включает в себя температуру, давление, и количества различных газов и загрязняющих веществ.
  • Engine Power Monitoring: Показывает, сколько выдает двигатель, нагрузку на два основных СМЕСа (главная энергосистема станции).
  • Engineering Cameras: Позволяет смотреть на камеры, расположенные в инженерном отсеке, а так же за инженерными киборгами и дронами.
  • Main Power Monitoring: Показывает выдачу энергии главной энергосистемы станции, статус СМЕСов, расположенных у солнечных батарей, общую нагрузку на сеть, уровень заряда всех АПЦ на станции.
  • Station Alert Computer: Показывает все инженерные тревоги по всей станции.

Tри кнопки:

  • Engine Charging Port (сверху-слева): Отрывает/закрывает шаттерсы, ведущие к суперматерии.
  • Engine Emitter (сверху-справа) : Включает/отключает излучатель в отсеке двигателя.
  • Engine Room Blast Doors (нижняя) : Открывает/закрывает шаттерсы, созданные для безопасности Комнаты наблюдения за работой двигателя.

Процедуры

В этом разделе описываются все базовые процедуры, которые необходимо выполнить для нормальной работы инженерного отсека, причем некоторые являются необходимыми для запуска двигателя. Но в то же время это не руководство по запуску двигателя, руководство чуть ниже.

Карта секции двигателя

Эта карта показывает как должен выглядеть отсек двигателя

Engine 1 17 layout.png
Нажмите для полного разрешения.

Выбор охлаждающего компонента

Существует несколько теорий о том какой газ лучше подходит для двигателя. Сейчас мы рассмотрим каждый по отдельности.

(Азот) Nitrogen

N2 canister.png Азот это оптимальный вариант для обычных запусков. Это инертный газ с неплохой теплоёмкостью. Комната с двигателем имеется четыре канистры с начала смены, там вы их легко найдете. Двигатель с начала смены так же настроен для работы с азотом, делая запуск двигателя немного легче и быстрей.

(Кислород) Oxygen

O2 canister.png Использование кислорода приводит к потерям в мощности двигателя, так как кислород очень горюч и взрывоопасен, к тому же стимулирует начало цепной реакции в ядре. Иначе говоря - не используйте кислород! Единственное корректное его применение описано в секции "Аварийные Процедуры" этого гайда.

(Углекислый газ) Carbon Dioxide

CO2 canister.png CO2 чуть лучше чем азот, из-за его увеличенной теплоёмкости на 50%. Это означает что двигатель который охлаждают CO2 приводит к большей эффективности TEG - результат этого в том что температура при работе чуть меньше, а выработка энергии чуть больше. CO2 не имеет недостатков перед N2.

(Форон/Плазма) Phoron

Plasma canister.png Особенно хорошо функционирует генератор, если охлаждать его смесью форона и азота или углекислого газа. Но следует учесть, что форон - не инертен. Двигатели, настроенные на работу с фороном крайне чуствительны к кислороду, так как смесь форона и кислорода черезвычайно неустойчива и взрывоопасна. Рекомендуется убедиться, что в системе охлаждения нет кислорода и она его не пропускает. Всего несколько искр - и весь реактор превратится в груду радиоактивных отходов. Так же заметим, что периодические вспышки в целом не опасны, и тем не менее рекомендуется держать створки ядра закрытыми.

Ввод охладителей двигателя

Для ввода охладителя двигателя используют помпы, заранее полные охлаждающего вещества. Для этого необходимо:

  • Есть четыре красных канистры в нижнем левом углу комнаты двигателя. Притащи две из них к портам в ПРАВОМ верхнем углу отсека.
  • ИспользуйWrench.png гаечный ключ для закрепления канистр на портах.
  • Войди в интерфейс помпы, кликнув по ней, включи максимум выкачки, нажав на "MAX", повысив давление до упора. После этого активируй помпу нажатием на power toggle : on.
  • Когда канистра охладителя опустеет, используй Wrench.png гаечный ключ для ее отсоединения. После опустошения не стоит выбрасывать канистру - она еще может быть полезна, собирать отходы работы двигателя, или же просто пригодится атмостехникам.
  • Повтори то же самое с двумя последними канистрами.
  • ОТКРЫВАТЬ КАНИСТРЫ (Open) НЕ НУЖНО! Так вы только выпустите газ в атмосферу отсека.

Установка промежуточного охладителя

Промежуточный охладитель замораживает отходы двигателя. Он находится за гермоворотами в западной части машинного отделения. Он должен быть заправлен таким же газом-охладителем, как и двигатель. Кислород может быть применен в качестве охладителя тут, но из-за низкой теплоемкости это делать не рекомендуется. Возьмите две канистры азота и одну форона из инженерного хранилища. В качестве альтернативы можно взять любой другой охладитель.

  • Заполучите одну канистру охладителя
  • Передвиньте канистру с охладителем к порту установки промежуточного охладителя, подсоедините её с помощью гаечного ключа и включите насос. Переключите насос на максимальную настройку.
  • Подождите пока газ в канистре закончится. Отсоедините канистру с помощью гаечного ключа. Переименуйте канистру в "CAUTION" (Кликните на канистру, после чего в интерфейсе нажмите на кнопку Relabel , если эта кнопка серая значит канистра не пуста).
  • Подсоедините канистру к порту откачки отходов, внутри комнаты с промежуточным охладителем.

ЗАМЕТКА: Порт для откачки отходов это НЕ ТОТ порт в главной комнате с двигателем что находится прямо перед кнопкой для контроля радиационных створок; подсоединив канистру туда вы просто будете высасывать охладитель прямиком из двигателя.

Настройка фильтрации

  • Найдите два фильтра в западной части комнаты с двигателем. Они фильтруют отходы из двигателя. Нажмите на каждый чтобы открыть интерфейс.
  • Если вы выбрали N2, пропустите к шагу 4.
  • Нажмите на кнопку конфигурации (Configure), и измените "Nitrogen" на тот, который вы выбрали. После чего нажмите на кнопку вновь, чтобы изменения вступили в силу.
  • Включите фильтры.
  • Найдите помпу выходного фильтра и включите ее (Максимальное давление).

Настройка SMES

Двигатель имеет два SMES.png SMES'а. SMES'ы это огромные батарейки. Их можно контролировать с помощью RCON консоли что установлена в комнате управления двигателем, или вручную, кликнув на него. Рассчитывая на настройку двигателя, двигатель производит от 800 к 1200+ киловатт энергии. Полный функционал SMES'ов расположен на специальной посвященной им странице. SMES в комнате с двигателем должен быть установлен на 250 000 Input (Auto) и 250 000 Output (Online). Этот SMES должен быть всегда заряжен полностью, поскольку без него всё системы охлаждения отключатся, и без них двигатель просто сломается. Главный SMES должен быть поставлен на ~750 000 Input (Auto) и подобный Output (Online). Впрочем вы можете установить на любую настройку, опираясь на уровень энергии который производит на данный момент двигатель. В идеале конечно же использовать полностью всю энергию которую производит двигатель.
ЗАМЕТКА: Вы всегда можете узнать сколько производит двигатель просто нажав на кабель когда у вас в руке мультитул. Не забудьте одеть изоляционные перчатки так как это очень опасно!

ЗАМЕТКА: SMES автоматизирован, и переключится на правильный input если там будет недостаточно заряда. Если Input будет поставлен чуть выше чем производится энергии - всё в порядке!

ЗАМЕТКА: SMES могут балансировать нагрузку. Когда не хватает энергии, SMES будет заряжаться из тех SMES'ов которые имеют вывод (Output) выше, чем у него и они не пусты.

Настройка радиаторов

  • Найдите циркуляционную помпу радиатора двигателя.
  • Включите помпу (Максимальное давление)

Запуск двигателя

Не стоит запускать двигатель до того, как будут проведены все необходимые настройки.

Запуск двигателя означает активацию суперматерии излучателем в машинном отделении. Включить излучатель можно самому, или при помощи кнопки в комнате Мониторинга работы двигателя.

  • Удостоверься, что все приготовления к запуску двигателя выполнены.
  • Открой защитные двери реактора (Reactor Blast Doors) при помощи соответствующей кнопки в комнате Мониторинга работы двигателя.
  • Активируй Emitter.png излучатель.
    • Щелкни по излучателю пустой рукой для активации вручную. Или используй кнопку в комнате Мониторинга работы двигателя.
  • Дождись необходимого числа выстрелов излучателя.
    • Излучатель выдает четыре выстрела, с паузами между ними. Ты можешь выключить его в любой момент, между выстрелами, даже во время выстрела.
    • 8 выстрелов достаточно для запитывания станции. 9-10 позволят выработать максимум через некоторое время. 11 уже рискованно, может вызвать перегрев. Не стоит стрелять больше, иначе будет перегрев двигателя. Для альтернативных охладителей смотрите таблицу.
    • Если вы "заряжаете" двигатель в середине смены, не стоит делать больше одного выстрела. Лучше сделать один, а затем проследить, чтоб температура была стабильной.
  • Выключи излучатель любым удобным тебе способом.
  • Закрой защитные двери реактора (Reactor Blast Doors).
Тип охладителя Рекомендуемые выстрелы Максимальные (Безопасные) выстрелы Приблизительная выработка (Рекомендуемые выстрелы) Приблизительная выработка (Максимальные выстрелы)
Nitrogen (N2) 8-9 10 1 MW ~1.1 MW
Carbon Dioxide (CO2) 10-11 12 ~1.2 MW ~1.2-1.3MW
Phoron (PH) 20 ? 50+ ? 1.6-1.8 MW ~2-3MW

Откачивание охладителя

В некоторых ситуациях, вроде небольшого перегрева двигателя, вы можете откачать охладитель и залить его снова и побольше. Конструкция двигателя позволяет вам перекачать охладитель в канистры, если в этом есть необходимость.

  • Найдите пустую канистру и пометьте ее как опасную(hazard).
    • (Для этого кликните пустой рукой по канистре и откройте панель управления, там нажмите кнопку "Relabel". Кнопка будет не активна если канистра не пуста полностью)
  • Используй Wrench.png wrench и прикрути канистру к Engine Drain port в Северо-западном углу двигательного отсека.
  • Включи engine drain pump и выкрути давление на максимальное.
  • Подожди пока охладитель откачается из двигателя. Это может занять некоторое время, а так же замены полной канистры на пустую, используй Wrench.png открути полную и прикрути пустую.
    • В некоторых критических ситуациях, хоть и достаточно редко, нужно полностью выкачать охладитель из двигателя, что достаточно рискованно.
  • как только двигатель опустел, отключи Engine Drain pump.
  • Открути канистру с использованным охладителем, и отнеси в атмосферный отсек.
  • Очень важно, если вы выкачали старый охладитель, его обязательно нужно заменить новым. Без охладителя, двигатель неизбежно перегреется.

Для персонала, стандартная процедура состоит из переименования пустых канистр из под N2 которые использовались для двигателя, в аварийные и подключение их к Engine Drain port , если что-то случится, канистра уже будет на месте.

Проветриваем ядро

В случае, когда двигатель серьезно перегреется, и может не быть времени на замену охладителя, то от него можно просто избавится при помощи космоса. В ядре есть шлюзы, которые ведут прямо в космос. Есть две кнопки, которые контролируют эти шлюзы. Одна находится в нижнем правом углу отсека с двигателем, вторая в офисе СЕ, рядом с входом в инженерный отсек.

Проветрить ядро легко, просто нажмите одну из двух кнопок и шлюзы откроются, весь охладитель отправится в космос. Это может занять некоторое время - минуту или две, если охладитель очень горячий или в ядре высокое давление - ибо большая часть охладителя будет в трубах, а не в самом ядре. Давление в двигателе можно посмотреть с помощью Engine Cooling Control консоли в Engine Monitoring.

Как только ядро полностью проветрилось, не забудьте закрыть шлюзы перед тем как закачивать новый охладитель.

Сброс Суперматерии

Если ситуация с двигателем вышла из под контроля и исправить ее не удалось, есть возможность сбросить ядро в космос, и избежать критического повреждения станции.

  • Получите доступ в офис СЕ, где находится кнопка аварийного сброса.
    • Если СЕ нет среди персонала, вам придется попросить ИИ открыть вам дверь.
    • Если ИИ тоже нет, вам нужно или взломать двери, или разобрать одно из окон, для того, чтобы попасть внутрь.
  • Убедитесь, что шлюзы ядра открыты. Для этого есть кнопка в офисе СЕ на столе и вторая в комнате с двигателем.
    • Если вы случайно закроете шлюзы ядра, или это сделает кто-то другой, вам не удастся сбросить ядро и повторить процесс сброса будет не возможно.
  • Кнопка сброса находится за столом СЕ,под стеклом. Разбей стекло с помощью монтировки, ящика с инструментами или любым другим тяжелым предметом. Может потребоваться несколько ударов.
  • Удостоверьтесь, что шлюзы ядра открыты, спросив кого-либо из членов экипажа находящихся в комнате с двигателем, или спросите ИИ.
  • Нажмите кнопку сброса.

Новое ядро Суперматерии можно заказать в карго.

Настройка двигателя

Тут описана настройка двигателя в первый раз, силами персонала.

Некоторые людей используют процедуру настройки что отличается от стандартной, но если вы ее не знаете или вам не сказали что делать, то в этой статье описан более менее универсальный способ.

Подключение охлаждения

Подключение охлаждения крайне важно, иначе двигатель быстро перегреется.

  1. Есть четыре канистры с азотом (nitrogen) в углу отсека с двигателем. Хватайте две штуки и тащите к голубым портам в противоположной стороне.
  2. Поставьте канистры на порты и прикрутите их гаечным ключем Wrench.png к портам.
  3. Переключите помпы ведущие от портов на максимум.
  4. Подождите пока канистры полностью не опустеют (Помпа покажет что входящее давление 0).
  5. Поменяйте канистры на две других.
  6. Включите omni-filters рядом с портами.
  7. Включите high-power pump рядом с окном в космос.

Активация Суперматерии

Теперь когда все подготовлено, можно приступать к настройке Суперматерии.

  1. Нажмите на SMES.png SMES power storage unit в двигательном отсеке, поставьте входящее (input) напряжение на "Auto" и "100,000", и исходящее "Online" и "100,000"
  2. Нажмите на 'Engine Room Blast Doors' кнопку рядом с ядром для закрытия аварийных шлюзов между ядром и двигательным отсеком.
  3. Нажмите на 'Engine Charging Port' кнопку рядом для открытия шлюза для подзарядки Суперматерии.
  4. Нажмите на Emitter.png emitter и дайте ему выстрелить Девять раз по Суперматерии. Нажмите еще раз чтобы он перестал стрелять.
  5. Закройте порт подзарядки и можете открыть аварийные шлюзы.

Подключение SMES.png СМЕСов

Есть такая вещь как СМЕСы что находятся в Engine Electrical Maintenance на севере от Engine room и на западе от Engine Monitoring Room. Есть еще СМЕС атмосферного отсека в тех.тонелях на северо-западе от этого отсека, который тоже надо подключить.

  1. Включите СМЕСы в Engine Electrical Maintenance согласно входящему и исходящему питанию вашего двигателя.
    1. Для этого вам нужно посмотреть напряжение которое выдает двигатель, его можно посмотреть через консоль Engine Power Monitoring (вторая консоль слева) или через пункт "Power Monitor" в вашем инженерном ПДА, в меню "Engine Power Grid". Ваше исходящее напряжение будет показано рядом с "Total Power". Другой вариант, используйте Multitool.png multitool на проводе в отсеке с двигателем и он покажет исходящее напряжение.
    2. СМЕСы в Electrical Maintenance будут брать питание из сети перед СМЕСом в двигательном отсеке -это значит что если вы поставите слишком высокое входящее напряжение, двигателю не хватит напряжения и его охлаждение остановится. Двигатель выдает максимум 1,000,000.
  2. Идите к атмосферному СМЕСу который мы упомянули ранее и установите входящее и исходящее напряжение примерно на 100,000, включив входящее на "Auto" и исходящее в положение "Online".
  3. Теперь вы можете пройтись по Substations и включить небольшие подстанции(Не обязательно).

Оптимизация и Обслуживание

Обслуживание Суперматерии

Через некоторое время после выстрела эмиттера, суперматерия перестанет выделять радиацию. В результате это повлияет на выработку энергии. Иногда требуется повышать выработку энергии - обычно, если её не хватает для подзарядки всех APC.png APC на станции.

  1. Проверьте ближайшую Engine Power Monitoring консоль для того, чтобы увидеть исходящее напряжение и настройки СМЕСов.
  2. Если SMES.png СМЕС мигает красным, значит они не заряжаются. В таком случае, вы должны поменять его входящие и исходящие настройки.
  3. Каждый полный коллектор с баком плазмы Plasma tank.png вырабатывает примерно ~8,300W с каждым выстрелом эмиттера. В свою очередь это означает, что с каждым выстрелом вы получите примерно 50,000W. Решите сколько выстрелов вам нужно для получения необходимого количества исходящего напряжения.
  4. Поменяйте настройки СМЕСов соответственно новому исходящему напряжению.

Исходящее напряжение

Как только все АПЦ заряжены, снижается оптимальное напряжение в сети. Если вы хотите избежать лишнего вреда, когда кто-то получит удар током, можно снизить исходящее напряжение.

  1. Проверьте ближайшую консоль Main Grid Power Monitoring и посмотрите нагрузку на данный момент.
  2. Поменяйте настройки СМЕСов SMES.pngсоотвествующе, с небольшим запасом на случай скачков напряжения или подзарядки АПЦ.

Улучшения

Улучшения - это опциональные шаги сборки, которые могут оказать большое влияние на КПД двигателя.

Выбор теплоносителя

Как указано выше, кроме Азота есть и другие теплоносители. Экспериментируйте с выбором теплоносителя чтобы найти оптимальное решение для вашего двигателя. Стоит упомянуть, что гибридные(использование различных типов теплоносителя для "горячих" и "холодных" контуров) типы приносят минимальное повышение производительности и затрудняют использование системы аварийного охлаждения.

Распределение теплоносителя

Экспериментируйте с различными объемами выбранного Вами теплоносителя. Утверждение "Больше теплоносителя == лучше" неверно! Контур радиаторов (правая сторона ТЭГов) работает эффективнее при более высоком давлении (можно использовать более плотный газ), в то время как контур ядра (левая сторона ТЭГов) обычно эффективнее работает с меньшим количеством теплоносителя. Соотношение 1:3 предположительно, эффективно, но вы свободны в выборе соотношения.

Улучшение SMES

Хранилище в инженерном отсеке содержит несколько запчастей для SMES'ов, которые могут увеличить объём хранимой энергии и/или входное/выходное напряжение, в зависимости от использованных катушек.

Увеличение количества ТЭГов

Это весьма редкое, но возможное решение. Вы можете заказать детали для ТЭГов в отделе поставок. Каждый ТЭГ способен стабильно выдавать до 500kW. Можно получить больше, но эффективность будет падать все сильнее, а потери расти. Поддерживать выработку на уровне 1MW/TEG вполне возможно, 2MW/TEG весьма трудно, 3MW/TEG считается невозможным для длительной эксплуатации.

Что-то более креативное?

Конечно! Только не взорвите двигатель.

Пиздец двигателю

Если Суперматерия перегреется или станет не стабильной, она взорвется. В таком случае,Engine Monitoring Computer сообщит о проишествии по всем интеркомам станции. Если вы услышали такое сообщение то Быстро, решительно бегите в инженерный. Даже если на смене есть куча инженеров, ваша первоочередная задача вернуть контроль над двигателем.

Для начала вам нужно узнать причину по которой подскочила температура двигателя. Отключение питания из-за не включения SMES.png СМЕСа в отсеке с двигателем, недостаточное исходящее напряжение,или не переключение входящего напряжения из "Off" на "Auto" - это самые распространенные причины. Еще одной причиной может быть неудачная попытка подключить охладитель Freezer.gif. А может быть это саботаж и двигатель специально был перегрет. Обычно достаточно обнаружить и решить проблему и двигатель сам стабилизируется. Если нестабильность ядра достигла 40%-50% и вы не нашли причину, вам срочно нужно охладить ядро и дать себе еще немного времени на поиск проблемы.

Есть четыре способа снижения температуры двигателя до оптимальных величин:

Аварийная закачка Охладителя не самый лучший вариант, но он может спасти вам жизнь. Ввод свежего охладителя в двигатель без избавления от старого, поможет быстро сбросить температуру и даст вам время подготовится к более эффективным мерам. Это особенно эффективно в случае, если атмосферный персонал охладил немного азота (nitrogen) специально с такой целью.

Замена охладителя самый лучший способ если у вас есть время. Следуя процедуре описанной выше, сначала откачайте охладитель из двигателя и когда старый охладитель откачан, закачайте новый. Как всегда, специально сделанный охладитель с низкой температурой (охлажденный азот (nitrogen)) ускорит процесс стабилизации.

Вентиляция и замена Более быстрый, но и более затратный способ. Если нестабильность ядра выше 60%-70%, а вы не успеваете закончить Замену охладителя, вы должны включить вентиляцию двигателя и заменить охладитель на новый.

Сброс Суперматерии самый хреновый метод, но когда не остается других вариантов, он может спасти станцию. Если нестабильность поднялась выше 80%, а вам кажется что вы не успеваете охладить ядро, стоит сбросить его, как было описано выше. Если инженерного персонала достаточно, как минимум один должен находиться рядом с кнопкой сброса, в то время когда другие пытаются вернуть двигатель под контроль, просто на всякий случай.


A long time ago in a galaxy far, far away...


Данная статья помечена как устаревшая, её содержание может быть неверным или неактуальным.

Если она не будет актуализирована или не появится веского повода для снятия этой плашки, то вскоре она будет перемещена в Священный архив.

При желании вы можете помочь проекту Onyx и сообществу Animus-logo.png SS13 в целом — загляните на наш Bus Mainframes.gif Портал сообщества.
Morgue.png


Добро пожаловать на исследовательский корабль NSV "Luna", новоиспеченный инженер! Это руководство описывает основные принципы работы с двигателем на суперматерии и обязано быть в нагрудном кармане вашего костюма до тех пор, пока вы не освоитесь.

Итак, перейдем к делу:

Сердце корабля

Собственной персоной

Двигатель - самая важная часть нашего исследовательского судна: он дает нам электричество, нужное каждому члену экипажа. И от того, насколько хорошо он работает, зависит не просто настроение и работа персонала, но даже и их жизнь.

Мы бы не стали прятать такую важную вещь ото всех, если бы не одно но: прямой контакт с суперматерией смертелен! Именно поэтому вы здесь.

Суперматерия

Сам по себе двигатель представляет собой огромный паровой котел: суперматерия нагревает газ, поступающий на термогенераторы, принцип работы которых вам известен.

  • Если вам интересны свойства суперматерии, информация о ней вынесена в отдельный раздел, с которым вы можете ознакомиться позже.

Запуск. Шаг первый

BayLunaStep1.png

  • Запускаем лазеры.

Включите лазеры через указанную консоль на полную мощность - 3000.

Что происходит вокруг материи можно узнать через консоль ниже.

Запуск. Шаг второй

BayLunaStep2.png

  • Наполняем камеру кислородом.

Откройте указанный клапан на максимальную мощность на некоторое время (пары минут хватит)

От количества кислорода в камере нагрева зависит скорость протекания реакции. Будьте достаточно аккуратны.

Запуск. Шаг третий

BayLunaStep3.png

  • Включаем петлю охлаждения.

Просто откройте вентили рядом с термогенераторами.

Если этого не сделать термогенераторы будут простаивать, а ваша команда ругаться. На вас.

Запуск. Шаг четвертый

BayLunaStep4.png

  • Создаем разность температур.

Следует включить холодильники, находящиеся позади генераторов и те, что выше, не забыв открыть вентиль по направлению к генераторам.

Не трогайте ручки контроля температуры, иначе заветные 5 градусов вам уже не достичь.

Рабочий цикл

Поздравляю, вы уже настроили двигатель, снизили мощность лазеров и все, включая вирусолога, рады. Остается лишь неустанно контролировать давление и температуру внутри комнаты нагрева, отвлекаясь на все те столь незначительные поломки, что подкидывает вам ваша команда.

Балуйтесь с настройкой лазеров, поиграйтесь с холодильниками, закачайте разные газы в камеру нагрева... Словом, экспериментируйте!

И не забывайте: рабочие параметры двигателя - 700-800 градусов по Кельвину и около 2000 кПа.

...states, "CORE OVERLOAD"

Не стоит паниковать!

Скорее неситесь в комнату контроля лазерами и отключите их, взгляните на монитор параметров двигателя и мы будем думать, что же нам сделать...

  • Давление более 2500 кПа:

Настройте лазеры так, чтобы давление незначительно падало. Температура несущественна на данном этапе.

  • Давление больше 2500 кПа:

Отключите лазеры.

Выдохните и проверьте еще раз: давление падает?

Если да - поздравляю, вы опять прекрасно выполнили свою работу!

Если нет - пришло время молиться и срочно тушить материю!

Здесь стоит учесть температуру внутри: если она очень близка к 1500 градусам - все очень плохо.

Существует два способа быстрого уменьшения темпов реакции:

1. Рециркуляция и охлаждение. (Есть запас в 50-100 градусов)

  • Достаточно сложный вариант, требующий контроля и быстроты: вам требуется откачать лишний кислород из камеры, добавить закись азота для гашения и обеспечить охлаждение внутри камеры напрямую от холодильников. По сути, вы "выключаете" двигатель штатным способом. Но учтите - вам придется снова восстанавливать работу но уже исходя из новых параметров.

Пока откачивается кислород, вы можете его остужать специальным холодильником.

2. Экстренный сброс. (Такого запаса уже нет)

Рычаг экстренного сброса в кабинете СЕ - дернув его вы сбросите весь газ из комнаты нагрева в космос. Реакция прекращается практически мгновенно.

BayLunaOVERLOAD.png

Проблема лишь в том, что вы теряете огромное количество газа, которое вам придется восполнить для повторного запуска.

SMES

Описание

Сверхпроводящее Магнитное Хранилище Энергии (Superconducting Magnetic Energy Storage). Необходимая вещь в недрах пустого космоса. Как понятно из названия, оно является очень емким аккумулятором электроэнергии.

На корабле находится 15 экземпляров:

  • 8 на складе электроники в инженерном отсеке.
  • 2 в кабинете СЕ.
  • 2 на станции шахтеров.
  • 1 аварийный за Чекпоинтом на первой палубе и парочка у ИИ.

Настройка SMES

Склад электроники

BayLunaSMESstorage.png SMES инженерного отсека выполняют функцию резервного источника энергии. Мы же не хотим, чтобы вирусолог не смог работать в разгар эпидемии?
Установите следующие номиналы на них:

Основные SMES:

Input: 44000|Auto, Output:34000|Offline

Bridge SMES:

Input: 44000|Auto, Output:34000|Offline

Дополнительные SMES (backup):

Input: 20000|Auto, Output:13000|Offline

Backup Bridge SMES:

Input: 20000|Auto, Output:13000|Offline

Этого хватит с лихвой до какой-нибудь нештатной ситуации. Но если что - осталось лишь подать напряжение на выход, и все довольны! Ну, кроме вирусолога.

Кабинет СЕ

BayLunaSMESce.png

Эти 2 SMES’a поддержат инженерный отсек, настроим их так:

Основной SMES:

Input: 44000|Auto, Output:34000|Offline

Дополнительный SMES (backup):

Input: 20000|Auto, Output:13000|Offline

Чекпоинт

Не забудьте как-нибудь настроить этот SMES - его аппетит настолько огромен, что может занимать чуть ли не половину нагрузки корабля!

Собственно:

Input: 60000|Auto, Output:50000|Online

Ричард, мы летим!

Fly1.png

Друг мой, наш корабль в отличии от пресловутых станций, имеет возможность перемещаться в пространстве. В наше распоряжении, инженеры предоставили 12 реактивных двигателей. Но, к началу вашей смены, не ко всем соплам подведена система труб, идущая из камеры сгорания, да и топливо СЕ прошлой смены слил.

Запуск. Шаг первый.

В первую очередь, эти самые двигатели необходимо включить, для этого, в кабинете СЕ есть терминал, в котором необходимо перевести все 12 пунктов в режим "Online".

Настройка труб. Шаг второй.

В двигательных отсеках необходимо провести трубы, идущие от камеры сгорания, ко всем соплам.

Подготовка смеси. Шаг третий.

Нет, здесь нет заправки и топливо вам придется готовить самим. В камеру сгорания требуется подать О2 и Плазму в соотношении 1/2. Для удобства контроля газов, прикрутите миксер чуть выше камеры сгорания, настройки в нем сделайте: 20% О2 и 80% Плазмы.​ После завершения закачки, не забудьте поджечь смесь и открыть клапаны выпуска.

Fly2.png

Курс на Альфа Центавра. Шаг четвертый.

На мостике располагается консоль управления кораблем. При необходимости, есть автопилот, задаете координаты и наслаждайтесь видом проносящихся звезд. Так же, для ручного управления предусмотрена проекция звездной системы в которой находится корабль и обнаруженные, с помощью Гравидара, объекты.

The Supermatter Crystal is the primary power source in most stations. A Supermatter Shard can be ordered from Cargo, which works the same way, but can be moved around. Its primary features are emitting tons of radiation, making everyone who could theoretically see it hallucinate, releasing hot oxygen and plasma, heating the air around, and exploding into a singularity if you screw up. It begins inert but being hit by an object or projectile will activate it.


Words of Warning

  1. The Supermatter is VERY DANGEROUS. Activating the Supermatter should be the last step in setting up any form of Supermatter based power! If you ordered it from cargo the crate should stay LOCKED AND SECURED until everything is ready.
  2. You require safety gear. A full radiation suit or radiation-proof hardsuit AND meson scanners.
  3. You need to cool the Supermatter down, or at the very least dump the hot gas into space. Note that the Supermatter itself heats up!
  4. Anything that bumps into the Supermatter is fundamentally annihilated. Don't touch it.

Mechanics

The supermatter is an extremely unstable crystal with particular properties. Here's how it behaves:

Power

The crystal's power determines how much energy is produced each tick, and also the range and amount of radiation and hallucinations generated.

  • Power decays over time.
  • Hitting the crystal with a non-physical bullet (usually emitters) will increase its power.
  • Power is increased every tick depending on the gas mix. This scales with the gas' temperature.
  • Consuming an object or mob will increase the power by a significant amount, independently from the object's size.
  • Power decay can be lowered or even completely prevented with CO2.
  • Too much power will result in dangerous sideeffects, like arcs of lightning or anomalies.

Instability

The crystal must be kept stable if you don't want it to explode.

  • Stability does not change by itself.
  • The crystal grows unstable if the gas mix is hotter than 310K. It will instead stabilize when it is cooler than 310K.
  • Physical bullets will destabilize the crystal, depending on the damage they do.
  • Large amounts of power will destabilize the crystal.
  • Large amounts of moles will not only destabilize the crystal but also prevent the stabilizing effect of cold gases.


Gas Interactions

Each gas has a different effect when it surrounds the supermatter crystal. The strenght of each effect depends on the percentage of it in the gasmix in the supermatter chamber.

Freon canister.pngFreon Safety: Extremely safe

Freon is a good emergency gas. It cools down all other gases in the loop and slowly dissipates away into nothing. It is not suitable for producing power though, because it severely lowers the power transmission rate. If the engine has enough power, it can produce freon faster than freon can dissipate.

N2 Canister.pngN2 Safety: Very Safe

N2 is a good safety gas. It actively lowers the temperature and the amount of waste gases that the supermatter crystal produces.

N2O Canister.pngN2O Safety: Safe

N2O reinforces the heat resistance of the supermatter crystal, allowing for much hotter setups than usual.

O2 Canister.pngO2 Safety: Dangerous

Oxygen is the gas with the best power/danger ratio. It provides a boost to power transmission without actively increasing the waste gas amount or temperature. It does however count against the safety bonus provided by N2.

Plasma Canister.pngPlasma Safety: Very dangerous

Plasma is very similar to Oxygen but provides a much higher power boost and waste and heat penalty. The extreme pressures and volumes of gas produced by this gas are very likely to clog pipes. WARNING: The roundstart setup can not handle pure plasma setups.

CO2 Canister.pngCO2 Safety: Very dangerous

CO2 is a very dangerous gas. In low concentrations, it doesn't do much but after a certain threshold is passed, it will slowly stabilize the internal crystal charge reactions and reduce the amount of power that the crystal loses every second. In high enough concentrations this can raise the internal power to infinitely high levels. Be careful however, since increased power not only increases the amount of heat and waste, but also causes catastrophic sideeffects long before the crystal delaminates.


Gas Production

The crystal produces plasma and oxygen while it's active.

  • Plasma and Oxygen burn if they're hot enough. This will heavily increase the temperature and reduce the oxygen percentage; if not kept under control this can end up destabilizing the crystal.
  • The amount and temperature of the produced gas is determined by the current crystal power.
  • The amount of oxygen is proportional to the temperature of the absorbed gases. Very cold gas input will result in very little oxygen.

Irradiation

The crystal will affect nearby mobs while it's active.

  • The range and power is determined by the current power. Being further away from the crystal also mitigates the effect.
  • The crystal will cause hallucinations to nearby mobs if they're not wearing meson scanners or equivalents.
  • The crystal will irradiate nearby mobs. A radsuit or other protective clothing can negate this effect.

Consuming

Anything that touches the crystal will be consumed and turned into dust. No exceptions. The only way to "safely" transport a shard is to pull it, being careful to not be pushed back into it by someone else.

Collapsing

If the crystal reaches 100% instability, it will delaminate. There are several different events that may happen when the crystal delaminates and they all depend on the state of the crystal during delamination.

  • A crystal in a heavily pressurized gas environment with large amounts of moles will always collapse into a singularity.
  • A crystal that has excessive amounts of power stored inside it will cause an explosion and release several tesla energy balls.
  • A crystal that is neither heavily overpressurized or overcharged will simply explode.

Box and Meta Station Setup

The supermatter engine on Box and Meta can be set up in many different ways and experienced engineers are encouraged to experiment. The less experienced engineers can refer to the safe guide below.

The safe beginner setup

This is an inefficient but very safe and simple setup for the engine. Stick to this until you feel that you understand the basics of this engine.

This guide uses a picture of the metastation engine, but the box one is functionally identical, only rotated by 90 degrees.

Step one: Safety

1. Put on an MGlasses.pngoptical meson scanner and a Radiation Suit.pngRadiation Suit Hood.png/L2locker.pngradiation suit in case someone prematurely activates the supermatter crystal.

Why: Meson Scanners protect from hallucinations, while the suit protect from radiation. Once the engine starts, it will start emitting both.



Supermattermeta.png

Step two: Prepare the gas loop

1. Your first step should be turning pipes on or off until they all match the pictured setup. Click a pipe to access the menu of it. Set them all to max pressure as well.

Why: The pump on the top puts the filtered output gas back in the loop. The pumps leading out of the N2 canisters put N2 in the loop, reducing the power generated but also reducing the temperature the crystal generates. The pumps that go in and out of the crystal chamber simply insert and take away the gas mix. The two pumps below leading to space put the gas into a cooling loop, so it'll be cold when it is re-inserted into the engine.

2. Make sure that the filter(green) on the left is set to "None" and the filters on the right to "O2", "Co2", "Plasma" and "None". Turn them all on and set them to max pressure as well.

Why: The first filter can collect plasma from the output mix into the canisters. You can optionally turn it on to produce plasma gas with the engine. The filters on the right separate the gases produced by the supermatter (O2, Plasma, Co2 from burning plasma) to keep the airmix constant. There is a loss of oxygen this way, but it is safer.

3. Swipe your ID at the air alarm(blue) and take a look inside the chamber. Hover your mouse over the 3 vents and 3 scrubbers(orange) and note their names. Open the air alarm menu and set the noted vents to 5000 kPA pressure and the scrubbers to siphon and extended range. The scrubbers will show an animation if they are set up to siphon correctly.

Why: The air alarm controls the vents (which puts gas in the chamber) and scrubbers (which take gas away from the chamber). This step makes sure they're active and working efficiently.

With these all done, the nitrogen should be cycling through the system and getting nice and cool.

Step three: Starting the radiation collectors

1. Open the secure storage. You will need someone with access (CE, Captain, or ask the AI) to press the button in the CE office. This gives you access to the plasma canister. Plasma Canister.png

Alternative: Swipe an engineering ID on the APC to unlock it. Turn the APC off. Use a crowbar on the blast door to force it open. Return to the APC and turn turn it back on, then swipe your ID to lock it again.

2. Obtain six plasma tanks.Plasma tank.png One can be found by the radiation collectors, and up to ten more can be taken from the tank dispenser. Tank Dispenser.png

3. Fill each plasma tank with the plasma canister. First, click the canister with a plasma tank in your active hand. Then open the canister menu and set the pressure to max. Double check to see if the tank was inserted correctly, then open the valve and close it after the tank has been filled. Eject the tank.

It's very important to only open the valve if a tank is inserted, or you'll be releasing a huge cloud of flammable, poisonous plasma in the air.

4. Insert each plasma tank into a radiation collector Radiation Collector.gif, then turn each on by clicking it with an empty hand.

Why: Radiation collectors become more efficient if their plasma tanks contain more plasma. If you keep the plasma tanks half-full, they won't produce enough power to fuel the station.

The engine is now ready to produce power.

Final step: Start the engine!

1. Double-check to ensure the cooling loop is active, you don't want to have an active supermatter with a pump still set to 101kPa or the vents/scrubbers inactive!

2. Head into the emitter chamber. It is on the right side of the picture above. Just click each emitter Emitter On.gif with an empty hand to turn them on. Don't stand in front of them unless you want some serious laser burns!

Congratulations! The supermatter engine is running!

Beyond the safety

Here are some pointers and hints on how to get more power out of this engine:

  • Coordinate with other engineers. Don't just silently adjust gases and pumps or you might end up causing accidents or decreasing efficiency.
  • Higher temperatures generate more energy.
  • Higher amounts of oxygen moles result in more power.
  • There is a can of freon for emergency cooling in secure storage. Consider opening it in the engine airlock if the engine is about to go critical. You can always scrub out the freon with a gas filter.
  • You can pump gas from the atmos mixing loop directly into the engine by using the orange pipe.
  • The supermatter crystal will glow in a distinct orange color if the gas composition and pressure levels in the chamber are ideal. This will reduce the impact of heat on the generation of power.
  • Consider setting the first filter of the loop to plasma. The supermatter produces plasma, which can be collected and used to refill the radiation collectors if the round goes on for too long.

Delta station setup

The standard power-gen with initially available equipment is a cooled radiation collector array. The Delta station setup is the only production model on NT stations and thus will be the focus of this guide. The engine room is centered around the Supermatter chamber and is divided into two halves. On the West side of the chamber are the extraction siphons. These lead into a capture filter and then to the cooling system. By default the system uses a space radiator setup; however a heater/cooler system is available. The gas loops north and passes over the chamber to the east side which is the primary filter and waste gas removal system. it then heads south to the gas injection system. This system can take gas from canisters(not provided) or from a gas lint that leads (by default) to the primary N2 tank.

Located above the chamber and gas loop is a complex array of mirrors and emitters that fire pulses to stimulate the Supermatter. To the south of the injection area is the SMES room and to the south of the cooling area is the turbine room.

How to setup

  1. Put on your safety gear
  2. In atmospherics turn on the N2 valve located at the south-east. Its the manual valve
  3. Load the radiation collectors with plasma tanks and activate them. Close the radiation shutters with the button at the airlock entrance.
  4. In the Supermatter area use the air alarm to max the vents inside the chamber and set the scrubbers to siphon.
  5. Enter the core airlock antechamber and max both the pumps
  6. Max and turn on the first filter Make sure its set to Nothing and then the pump to the space radiator.
  7. Max the Primary Filter and make sure its set to N2.
  8. Open the external N2 Line. The loop should pressurize. Don't clog the loop with gas! 300 should do.
  9. Activate the emitters
  10. Program the SMES system

Side projects

  • Use it as a heat and gas source for a turbine.
  • Experiment with other gas mixtures.
  • Work on the crappy pipe job.
  • Add more collectors and SMES
  • Replace the crusher!

Sabotaging the supermatter

Want to sabotage the crystal but can't figure out how to pull it off? Here are some pointers and hints:

General hints

  • You can break the APC of the room to stop all pipes and scrubbers from working.
  • Disable the telecomms APC with the CE console to prevent the supermatter from anouncing its status.
  • Cut cameras near the engine.
  • Instead of turning off pumps and filters, you can just set them to extremely low values instead. They'll still appear to be working.
  • Taking out all the engineers before attempting a delamination helps a lot.
  • Opening a canister of plasma in engineering and igniting it will make it a lot harder for people to fix your sabotage. Even more effective if the radiation levels are high.
  • Keep a flash or EMP on hand. The AI and its borgs are pretty much guaranteed to try and intervene to prevent harm.
  • Stay around and pretend to be helping so you can undo all the repair attempts by other people.

Regular delamination

These are the easiest to pull off and require no special conditions. You'll want to keep the supermatter chamber very hot and full of plasma or CO2.

  • Use the filters near the emitter room to filter out N2 and N2O while keeping Plasma, Oxygen and CO2 in the loop.
  • Pump in pure plasma or burn mix from atmos.
  • Disable or break the cooling array. Deconstructing a single piece of the heat exchanger can be enough.
  • Get rid of engineering's freon supply.
  • Shooting guns at the crystal is extremely effective, but it's likely that you'll end up in the blast.
  • Disable the scrubbers once the chamber is hot enough.

Overcharged delamination

This kind of delamination requires careful gas management but is faster, far more destructive and there's a good chance it will irridiate, burn and shock the engineers who are trying to fix it.

  • Ensure that only CO2 is in the supermatter chamber at all times. Filter all other gases and keep the scrubbers running.
  • Keep the emitters online and firing if you can.
  • Get as much CO2 into the chamber as possible. Larger amounts of CO2 can even compensate for the oxygen and plasma waste.
  • Wear as much radiation protection as you can. Consider bringing some charcoal aswell.
  • Try to keep radiation suits away from engineers, they won't be able to get near the overcharged engine without one.
  • Make sure you are wearing insulated gloves to protect yourself from the lightning arcs.
  • Disabling the cooling is not required. In fact, keeping the chamber cool might help you get more power.
  • The anomalies, gravity pulses and lightning arcs will quickly turn the engine room into a deathtrap. Make sure you have everything set up correctly before this starts happening.

Critical mass delamination

This is by far the most difficult but also the simplest one.

  • Pump in as much gas as possible into the chamber.
  • Make sure no gas leaves the chamber. Put up walls, deconstruct scrubber pipes, do whatever possible to keep the gas inside.

НачинающимИнтересноеПрофессииРуководства

Ролевая игра

Руководство по отыгрышу ролиРуководство по отыгрышу роли для продвинутыхРуководство по заполнению окна Relations и созданию связейПсихология убийстваПсихологические заболеванияЗнания персонажа

Режимы игры

Агент СиндикатаОперативник СиндикатаСнаряжение СиндикатаРеволюцияКультВампирВолшебникГенокрадКосмический Ниндзя

Инженерное дело

Руководство инженераРуководство атмосферного техникаИскусство взломаКонструированиеТехнологии связиПродвинутое конструирование

Медицинские руководства

Медицина ХирургияВирусология ХимияМедицинский справочникРадиация

Научно-исследовательские проекты

ИсследованияРабота с газамиКсенобиологияКсеноархеологияРобототехникаИнтегрированные схемы

Служба безопасности

Руководство службы безопасностиСвод космических законовОружие

Прочее

Как грамотно писатьПравильная работа с документамиОфициальные бланки документов НТКак готовить еду ОниксаРуководство по напиткам

Руководства для желающих помочь

Учимся программировать в BYONDРисуем спрайты