Virologist: различия между версиями
Jack Rost (обсуждение | вклад) (→Меню: Робобургера больше нет.) |
NordOst (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | + | '''Вирусология''' — раздел [[микробиология|микробиологии]], изучающий [[вирус]]ы (от латинского слова virus — яд). | |
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | + | Впервые существование вируса (как нового типа возбудителя болезней) доказал в [[1892 год]]у русский учёный [[Ивановский, Дмитрий Иосифович|Д. И. Ивановский]]. После многолетних исследований заболеваний [[табак|табачных растений]], в работе, датированной 1892 годом, Д. И. Ивановский приходит к выводу, что [[мозаичная болезнь табака]] вызывается «бактериями, проходящими через [[фильтр Шамберлана]], которые, однако, не способны расти на искусственных субстратах». На основании этих данных были определены критерии, по которым возбудителей заболеваний относили к этой новой группе: фильтруемость через «бактериальные» фильтры, неспособность расти на искусственных средах, воспроизведения картины заболевания фильтратом, освобождённым от [[бактерии|бактерий]] и [[грибы|грибов]]. Возбудитель мозаичной болезни называется Д. И. Ивановским по-разному, термин вирус ещё не был введён, иносказательно их называли то «фильтрующимися бактериями», то просто «микроорганизмами». | |
− | + | Пять лет спустя, при изучении заболеваний крупного рогатого скота, а именно — [[ящур]]а, был выделен аналогичный фильтрующийся микроорганизм. А в [[1898 год]]у, при воспроизведении опытов Д. Ивановского голландским ботаником [[Бейеринк, Мартинус Виллем|М. Бейеринком]], он назвал такие микроорганизмы «фильтрующимися вирусами». В сокращённом виде, это название и стало обозначать данную группу микроорганизмов. | |
− | [[ | + | В [[1901 год|1901 г.]] было обнаружено первое вирусное заболевание человека — [[жёлтая лихорадка]]. Это открытие было сделано американским военным хирургом У. Ридом и его коллегами. |
− | В | + | В [[1911 год|1911 г.]] [[Роус, Фрэнсис Пейтон|Фрэнсис Раус]] доказал вирусную природу рака — [[саркома Рауса|саркомы Рауса]] (лишь в [[1966 год|1966 г.]], спустя 55 лет, ему была вручена за это открытие [[Нобелевская премия по физиологии и медицине]]). |
− | == | + | == Этапы развития == |
− | + | {{copyvio|http://dipland.ru/%D0%95%D1%81%D1%82%D0%B5%D1%81%D1%82%D0%B2%D0%BE%D0%B7%D0%BD%D0%B0%D0%BD%D0%B8%D0%B5/%D0%A0%D0%BE%D0%BB%D1%8C_%D0%B2%D0%B8%D1%80%D1%83%D1%81%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D0%B8_%D0%B2_%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B8_%D0%BF%D1%80%D0%BE%D0%B1%D0%BB%D0%B5%D0%BC%D1%8B_%D1%87%D0%B5%D0%BB%D0%BE%D0%B2%D0%B5%D1%87%D0%B5%D1%81%D1%82%D0%B2%D0%B0_13210/|date=2011-05-13}} | |
− | + | Быстрый прогресс в области вирусологических знаний, основанный в значительной мере на достижениях смежных естественных наук, обусловил возможность углубленного познания природы вирусов. Как ни в одной другой науке, в вирусологии прослеживается быстрая и чёткая смена уровней познания — от уровня организма до субмолекулярного. | |
− | + | Приведенные периоды развития вирусологии отражают те уровни, которые являлись доминирующими в течение одного — двух десятилетий. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | '''Уровень организма (30—40-е годы XX века).''' Основной экспериментальной моделью являются лабораторные животные (белые мыши, крысы, кролики, хомяки и т. д.), основным модельным вирусом — вирус [[грипп]]а. | |
− | + | В 40-е годы в вирусологию в качестве экспериментальной модели прочно входят куриные эмбрионы в связи с их высокой чувствительностью к вирусам гриппа, оспы и некоторым другим. Использование этой модели стало возможным благодаря исследованиям австралийского вирусолога и иммунолога [[Бёрнет, Фрэнк Макфарлейн|Ф. М. Бёрнета]], автора пособия по вирусологии «Вирус как организм». | |
− | + | Открытие в [[1941 год|1941 г.]] американским вирусологом Херстом феномена гемагглютинации немало способствовало изучению взаимодействия вируса с клеткой на модели вируса гриппа и [[эритроциты|эритроцитов]]. | |
− | |||
− | + | '''Уровень клетки (50-е годы)'''. В [[1949 год|1949 г.]] происходит значительное событие в истории вирусологии — открытие возможности культивировать клетки в искусственных условиях. В [[1952 год|1952 г.]] [[Эндерс, Джон Франклин|Дж. Эндерс]], [[Уэллер, Томас Хакл|Т. Уэллер]], [[Роббинс, Фредерик Чапмен|Ф. Роббинс]] получили Нобелевскую премию за разработку метода культуры клеток. Использование культуры клеток в вирусологии явилось подлинно революционным событием, послужившим основой для выделения многочисленных новых вирусов, их идентификации, клонирования, изучения их взаимодействия с клеткой. Появилась возможность получения культуральных вакцин. Эта возможность была доказана на примере вакцины против [[полиомиелит]]а. В содружестве с американскими вирусологами [[Солк, Джонас|Дж. Солком]] и [[Сэйбин, Альберт|А. Сейбином]], советскими вирусологами [[Чумаков, Михаил Петрович|М. П. Чумаковым]], [[Смородинцев, Анатолий Александрович|А. А. Смородинцевым]] и др. была разработана технология производства, апробирована и внедрена в практику убитая и живая вакцины против полиомиелита. Была проведена массовая иммунизация детского населения в [[Союз Советских Социалистических Республик|СССР]] (около 15 млн.) живой полиомиелитной вакциной, в результате резко снизилась заболеваемость полиомиелитом и практически исчезли паралитические формы заболевания. За разработку и внедрение в практику живой полиомиелитной вакцины М. П. Чумакову и А. А. Смородинцеву была присуждена [[Ленинская премия]]. Другим важным приложением техники выращивания вирусов явилось получение Дж. Эндерсом и А. А. Смородинцевым живой коревой вакцины, широкое применение которой обусловило значительное снижение заболеваемости [[корь]]ю и является основой для искоренения этой инфекции. | |
− | {{ | + | Широко внедрялись в практику и другие культуральные [[Вакцина|вакцины]] — энцефалитная, ящурная, антирабическая и т. д. |
+ | |||
+ | |||
+ | '''Молекулярный уровень (60-е годы).''' В вирусологии широко стали использовать методы молекулярной биологии, а вирусы благодаря простой организации их генома стали распространённой моделью для молекулярной биологии. Ни одно открытие молекулярной биологии не обходится без вирусной модели, включая [[генетический код]], весь механизм внутриклеточной экспрессии генома, репликацию ДНК, процессинг (созревание) информационных РНК и т. д. В свою очередь использование молекулярных методов в вирусологии позволило установить принципы строения (архитектуры) вирусных индивидуумов — вирионов (термин, введённый французским микробиологом [[Львов, Андре|А. Львовом]]), способы проникновения вирусов в клетку и их репродукции. | ||
+ | |||
+ | |||
+ | '''Субмолекулярный уровень (70-е годы).''' Стремительное развитие молекулярной биологии открывает возможности изучения первичной структуры нуклеиновых кислот и белков. Появляются методы секвенирования ДНК, определения аминокислотных последовательностей белка. Получают первые генетические карты геномов ДНК-содержащих вирусов. | ||
+ | |||
+ | [[Балтимор, Дейвид|Д. Балтимором]] и одновременно [[Темин, Хоуард|Г. Теминым]] и С. Мизутани была открыта [[Ревертаза|обратная транскриптаза]] в составе РНК-содержащих онкогенных вирусов, фермент, переписывающий РНК на ДНК. Становится реальным синтез гена с помощью этого фермента на матрице, выделенной из полисом иРНК. Появляется возможность переписать РНК в ДНК и провести её секвенирование. | ||
+ | |||
+ | Возникает новый раздел молекулярной биологии — [[Генетическая инженерия|генная инженерия]]. В [[1972 год|1972 г.]] публикуется сообщение [[Берг, Пол|П. Берга]] в США о создании рекомбинантной молекулы ДНК, которое положило начало эре генной инженерии. Появляется возможность получения большого количества нуклеиновых кислот и белков путём введения рекомбинантных ДНК в состав генома прокариот и простых эукариот. Одним из основных практических приложений нового метода является получение дешёвых препаратов белков, имеющих значение в медицине (инсулин, интерферон) и сельском хозяйстве (дешёвые белковые корма для скота). Этот период характеризуется важными открытиями в области медицинской вирусологии. В фокусе изучения — три наиболее массовых болезни, наносящих огромный ущерб здоровью людей, — грипп, рак, гепатит. | ||
+ | |||
+ | Установлены причины регулярно повторяющихся пандемий гриппа. Детально изучены вирусы рака животных (птиц, грызунов), установлена структура их генома и идентифицирован ген, ответственный за злокачественную трансформацию клеток — [[онкоген]]. Установлено, что причиной гепатитов А и В являются разные вирусы: гепатит А вызывает РНК-содержащий вирус, отнесённый к семейству пикорнавирусов, а гепатит В — ДНК-содержащий вирус, отнесенный к семейству гепаднавирусов. [[Бламберг, Барух|Б. Бламберг]], исследуя антигены крови у аборигенов Австралии, обнаружил так называемый австралийский антиген, который он принял за один из антигенов крови. Позже было выявлено, что этот антиген является антигеном гепатита В, носительство которого распространено во всех странах мира. За открытие австралийского антигена Б. Бламбергу в [[1976 год|1976 г.]] была присуждена Нобелевская премия. Б. Бламберг разделил Нобелевскую премию с другим американским учёным [[Гайдушек, Карлтон|К. Гайдушеком]], который установил вирусную этиологию, одной из медленных инфекций человека — куру, наблюдающейся в одном из туземных племён на острове Новая Гвинея и связанной с ритуальным обрядом — поеданием зараженного мозга умерших родственников. Благодаря усилиям К. Гайдушека, поселившегося на острове Новая Гвинея, эта традиция была искоренена и число больных резко сократилось. | ||
+ | |||
+ | == Природа вирусов == | ||
+ | Вирусы обладают уникальными свойствами, которые позволяют выделить их из общей массы микроорганизмов: | ||
+ | |||
+ | # Наличие только одного из двух видов нуклеиновых кислот. | ||
+ | # Отсутствие собственной белок-синтезируемых систем. | ||
+ | # Они представляют собой генетических паразитов. | ||
+ | # Вирусы не растут, а только репродуцируются (размножаются). | ||
+ | |||
+ | == Разделы вирусологии == | ||
+ | |||
+ | * [[Общая вирусология]] | ||
+ | |||
+ | Общая вирусология изучает основные принципы строения, размножения вирусов, их взаимодействие с клеткой-хозяином, происхождение и распространение вирусов в природе. Один из важнейших разделов общей вирусологии — [[молекулярная вирусология]], изучающая структуру и функции вирусных нуклеиновых кислот, механизмы экспрессии вирусных генов, природу устойчивости организмов к вирусным заболеваниям, молекулярную эволюцию вирусов. | ||
+ | |||
+ | * [[Частная вирусология]] | ||
+ | |||
+ | Частная вирусология исследует особенности определенных групп вирусов человека, животных и растений и разрабатывает меры борьбы с вызываемыми этими вирусами болезнями. | ||
+ | |||
+ | * [[Молекулярная вирусология]] | ||
+ | В 1962 г. вирусологи многих стран собрались на симпозиуме в [[Соединённые Штаты Америки|США]], чтобы подвести первые итоги развития молекулярной вирусологии. На этом симпозиуме звучали не совсем привычные для вирусологов термины: архитектура вирионов, нуклеокапсиды, капсомеры. Начался новый период в развитии вирусологии — период молекулярной вирусологии. | ||
+ | |||
+ | Молекулярная вирусология, или молекулярная биология вирусов, — составная часть общей молекулярной биологии и в то же время — раздел вирусологии. Это и неудивительно. Вирусы — наиболее простые формы жизни, и поэтому вполне естественно, что они стали и объектами изучения, и орудиями молекулярной биологии. На их примере можно изучать фундаментальные основы жизни и ее проявления. | ||
+ | |||
+ | С конца 50-х годов, когда начала формироваться синтетическая область знаний, лежащая на границе неживого и живого и занимающаяся изучением живого, методы молекулярной биологии хлынули обильным потоком в вирусологию. Эти методы, основанные на [[биофизика|биофизике]] и [[биохимия|биохимии]] живого, позволили в короткие сроки изучить строение, химический состав и репродукцию вирусов. | ||
+ | |||
+ | Поскольку вирусы относятся к сверхмалым объектам для их изучения нужны сверхчувствительные методы С помощью электронного микроскопа удалось увидеть отдельные вирусные частицы, но определить их химический состав можно только, собрав воедино триллионы таких частиц. Для этого были разработаны методы [[ультрацентрифугирование|ультрацентрифугирования]]. Современные ультрацентрифуги — это сложноустроенные приборы, главной частью которых являются роторы, вращающиеся со скоростью в десятки тысяч оборотов в секунду. | ||
+ | |||
+ | Здесь нет надобности рассказывать о других методах молекулярной вирусологии, тем более что они меняются и совершенствуются из года в год быстрыми темпами Если в 60-х годах основное внимание вирусологов было фиксировано на характеристике вирусных нуклеиновых кислот и белков, то к началу 80-х годов была расшифрована полная структура многих вирусных генов и геномов и установлена не только аминокислотная последовательность, но и третичная пространственная структура таких сложных белков, как гликопротеид гемагглютинина вируса гриппа. В настоящее время можно не только связать изменения антигенных детерминант вируса гриппа с заменой в них аминокислот, но и рассчитывать прошедшие, настоящие и будущие изменения этих антигенов. | ||
+ | |||
+ | С 1974 г. начала бурно развиваться новая отрасль [[биотехнология|биотехнологии]] и новый раздел молекулярной биологии — генная, или генетическая, [[генная инженерия|инженерия]]. Она немедленно была поставлена на службу вирусологии. | ||
+ | |||
+ | == Семейства, включающие вирусы человека и животных == | ||
+ | * Семейство: Poxviridae ([[поксвирусы]]) | ||
+ | * Семейство: Iridoviridae ([[иридовирусы]]) | ||
+ | * Семейство: Herpesviridae ([[Герпесвирусы|вирусы герпеса]]) | ||
+ | * Семейство: Aflenoviridae ([[аденовирусы]]) | ||
+ | * Семейство: Papovaviridae ([[паповавирусы]]) | ||
+ | * Предполагаемое семейство: [[Hepadnaviridae]] (вирусы, подобные вирусу гепатита В) | ||
+ | * Семейство: Parvoviridae ([[парвовирусы]]) | ||
+ | * Семейство: Reoviridae ([[реовирусы]]) | ||
+ | * Предполагаемое семейство: [Birnaviridae] (вирусы с двухцепочечной РНК, состоящей из двух сегментов) | ||
+ | * Семейство: Togaviridae ([[тогавирусы]]) | ||
+ | * Семейство: Coronaviridae ([[Коронавирус|коронавирусы]]) | ||
+ | * Семейство: Paramyxoviridae ([[парамиксовирусы]]) | ||
+ | * Семейство: Rhabdoviridae ([[рабдовирусы]]) | ||
+ | * Предполагаемое семейства: ([[Filoviridae]]) (вирусы Марбург и Эбола) | ||
+ | * Семейство: Orthomyxoviridae ([[Грипп|вирусы гриппа]]) | ||
+ | * Семейство: Bunyaviridae ([[буиьявирусы]]) | ||
+ | * Семейство: Arenaviridae ([[аренавирусы]]) | ||
+ | * Семейство: Retroviridae ([[ретровирусы]]) | ||
+ | * Семейство: Picornaviridae ([[пикорнавирусы]]) | ||
+ | * Семейство: Caliciviridae ([[калицивирусы]]) | ||
+ | |||
+ | == Литература == | ||
+ | * ''Белоусова Р.В., Преображенская Э.А., Третьякова И.В.'' Ветеринарная вирусология. — КолосС, 2007. — 448 с. — ISBN 978-5-9532-0416-3 | ||
+ | * ''Букринская А.Г.'' Вирусология. — М.: Медицина, 1986. — 336 с. | ||
+ | * Вирусология: В 3-х т. Т. 1: Пер. с англ. / Под ред. Б. Филдса, Д. Найпа, при участии Р. Ченока, Б. Ройзмана, Дж. Мелника, Р. Шоупа. — М.: Мир, 1989. — 492 с. — ISBN 5-03-000283-9 | ||
+ | * Вирусология: В 3-х т. Т. 2: Пер. с англ. / Под ред. Б. Филдса, Д. Найпа, при участии Р. Ченока, Б. Ройзмана, Дж. Мелника, Р. Шоупа. — М.: Мир, 1989. — 496 с. — ISBN 5-03-000284-7 | ||
+ | * Вирусология: В 3-х т. Т. 3: Пер. с англ. / Под ред. Б. Филдса, Д. Найпа, при участии Р. Ченока, Б. Ройзмана, Дж. Мелника, Р. Шоупа. — М.: Мир, 1989. — 452 с. — ISBN 5-03-000285-5 | ||
+ | |||
+ | == См. также == | ||
+ | * [[Список родов вирусов]] | ||
+ | * [[Генетика вирусов]] | ||
+ | |||
+ | {{virusology-stub}} | ||
+ | {{Разделы микробиологии|state=expanded}} | ||
+ | {{Разделы биологии}} | ||
+ | |||
+ | [[Категория:Вирусология|*]] | ||
+ | |||
+ | [[ar:علم الفيروسات]] | ||
+ | [[bg:Вирусология]] | ||
+ | [[ca:Virologia]] | ||
+ | [[co:Virologia]] | ||
+ | [[cs:Virologie]] | ||
+ | [[de:Virologie]] | ||
+ | [[en:Virology]] | ||
+ | [[eo:Virusscienco]] | ||
+ | [[es:Virología]] | ||
+ | [[et:Viroloogia]] | ||
+ | [[fr:Virologie]] | ||
+ | [[gl:Viroloxía]] | ||
+ | [[hi:विषाणु विज्ञान]] | ||
+ | [[hr:Virologija]] | ||
+ | [[id:Virologi]] | ||
+ | [[io:Virologio]] | ||
+ | [[is:Veirufræði]] | ||
+ | [[it:Virologia]] | ||
+ | [[ja:ウイルス学]] | ||
+ | [[ka:ვირუსოლოგია]] | ||
+ | [[kk:Вирусология]] | ||
+ | [[ko:바이러스학]] | ||
+ | [[la:Virologia]] | ||
+ | [[lt:Virusologija]] | ||
+ | [[lv:Virusoloģija]] | ||
+ | [[ms:Virologi]] | ||
+ | [[nl:Virologie]] | ||
+ | [[nn:Virologi]] | ||
+ | [[no:Virologi]] | ||
+ | [[oc:Virologia]] | ||
+ | [[pl:Wirusologia]] | ||
+ | [[pt:Virologia]] | ||
+ | [[ro:Virusologie]] | ||
+ | [[si:වෛරස විද්යාව]] | ||
+ | [[simple:Virology]] | ||
+ | [[sk:Virológia]] | ||
+ | [[sq:Viriologjia]] | ||
+ | [[sv:Virologi]] | ||
+ | [[th:วิทยาไวรัส]] | ||
+ | [[tl:Birolohiya]] | ||
+ | [[tr:Viroloji]] | ||
+ | [[uk:Вірусологія]] | ||
+ | [[yi:וויראלאגיע]] | ||
+ | [[zh:病毒学]] |
Версия от 19:36, 25 февраля 2012
Вирусология — раздел микробиологии, изучающий вирусы (от латинского слова virus — яд).
Впервые существование вируса (как нового типа возбудителя болезней) доказал в 1892 году русский учёный Д. И. Ивановский. После многолетних исследований заболеваний табачных растений, в работе, датированной 1892 годом, Д. И. Ивановский приходит к выводу, что мозаичная болезнь табака вызывается «бактериями, проходящими через фильтр Шамберлана, которые, однако, не способны расти на искусственных субстратах». На основании этих данных были определены критерии, по которым возбудителей заболеваний относили к этой новой группе: фильтруемость через «бактериальные» фильтры, неспособность расти на искусственных средах, воспроизведения картины заболевания фильтратом, освобождённым от бактерий и грибов. Возбудитель мозаичной болезни называется Д. И. Ивановским по-разному, термин вирус ещё не был введён, иносказательно их называли то «фильтрующимися бактериями», то просто «микроорганизмами».
Пять лет спустя, при изучении заболеваний крупного рогатого скота, а именно — ящура, был выделен аналогичный фильтрующийся микроорганизм. А в 1898 году, при воспроизведении опытов Д. Ивановского голландским ботаником М. Бейеринком, он назвал такие микроорганизмы «фильтрующимися вирусами». В сокращённом виде, это название и стало обозначать данную группу микроорганизмов.
В 1901 г. было обнаружено первое вирусное заболевание человека — жёлтая лихорадка. Это открытие было сделано американским военным хирургом У. Ридом и его коллегами.
В 1911 г. Фрэнсис Раус доказал вирусную природу рака — саркомы Рауса (лишь в 1966 г., спустя 55 лет, ему была вручена за это открытие Нобелевская премия по физиологии и медицине).
Этапы развития
Быстрый прогресс в области вирусологических знаний, основанный в значительной мере на достижениях смежных естественных наук, обусловил возможность углубленного познания природы вирусов. Как ни в одной другой науке, в вирусологии прослеживается быстрая и чёткая смена уровней познания — от уровня организма до субмолекулярного.
Приведенные периоды развития вирусологии отражают те уровни, которые являлись доминирующими в течение одного — двух десятилетий.
Уровень организма (30—40-е годы XX века). Основной экспериментальной моделью являются лабораторные животные (белые мыши, крысы, кролики, хомяки и т. д.), основным модельным вирусом — вирус гриппа.
В 40-е годы в вирусологию в качестве экспериментальной модели прочно входят куриные эмбрионы в связи с их высокой чувствительностью к вирусам гриппа, оспы и некоторым другим. Использование этой модели стало возможным благодаря исследованиям австралийского вирусолога и иммунолога Ф. М. Бёрнета, автора пособия по вирусологии «Вирус как организм».
Открытие в 1941 г. американским вирусологом Херстом феномена гемагглютинации немало способствовало изучению взаимодействия вируса с клеткой на модели вируса гриппа и эритроцитов.
Уровень клетки (50-е годы). В 1949 г. происходит значительное событие в истории вирусологии — открытие возможности культивировать клетки в искусственных условиях. В 1952 г. Дж. Эндерс, Т. Уэллер, Ф. Роббинс получили Нобелевскую премию за разработку метода культуры клеток. Использование культуры клеток в вирусологии явилось подлинно революционным событием, послужившим основой для выделения многочисленных новых вирусов, их идентификации, клонирования, изучения их взаимодействия с клеткой. Появилась возможность получения культуральных вакцин. Эта возможность была доказана на примере вакцины против полиомиелита. В содружестве с американскими вирусологами Дж. Солком и А. Сейбином, советскими вирусологами М. П. Чумаковым, А. А. Смородинцевым и др. была разработана технология производства, апробирована и внедрена в практику убитая и живая вакцины против полиомиелита. Была проведена массовая иммунизация детского населения в СССР (около 15 млн.) живой полиомиелитной вакциной, в результате резко снизилась заболеваемость полиомиелитом и практически исчезли паралитические формы заболевания. За разработку и внедрение в практику живой полиомиелитной вакцины М. П. Чумакову и А. А. Смородинцеву была присуждена Ленинская премия. Другим важным приложением техники выращивания вирусов явилось получение Дж. Эндерсом и А. А. Смородинцевым живой коревой вакцины, широкое применение которой обусловило значительное снижение заболеваемости корью и является основой для искоренения этой инфекции.
Широко внедрялись в практику и другие культуральные вакцины — энцефалитная, ящурная, антирабическая и т. д.
Молекулярный уровень (60-е годы). В вирусологии широко стали использовать методы молекулярной биологии, а вирусы благодаря простой организации их генома стали распространённой моделью для молекулярной биологии. Ни одно открытие молекулярной биологии не обходится без вирусной модели, включая генетический код, весь механизм внутриклеточной экспрессии генома, репликацию ДНК, процессинг (созревание) информационных РНК и т. д. В свою очередь использование молекулярных методов в вирусологии позволило установить принципы строения (архитектуры) вирусных индивидуумов — вирионов (термин, введённый французским микробиологом А. Львовом), способы проникновения вирусов в клетку и их репродукции.
Субмолекулярный уровень (70-е годы). Стремительное развитие молекулярной биологии открывает возможности изучения первичной структуры нуклеиновых кислот и белков. Появляются методы секвенирования ДНК, определения аминокислотных последовательностей белка. Получают первые генетические карты геномов ДНК-содержащих вирусов.
Д. Балтимором и одновременно Г. Теминым и С. Мизутани была открыта обратная транскриптаза в составе РНК-содержащих онкогенных вирусов, фермент, переписывающий РНК на ДНК. Становится реальным синтез гена с помощью этого фермента на матрице, выделенной из полисом иРНК. Появляется возможность переписать РНК в ДНК и провести её секвенирование.
Возникает новый раздел молекулярной биологии — генная инженерия. В 1972 г. публикуется сообщение П. Берга в США о создании рекомбинантной молекулы ДНК, которое положило начало эре генной инженерии. Появляется возможность получения большого количества нуклеиновых кислот и белков путём введения рекомбинантных ДНК в состав генома прокариот и простых эукариот. Одним из основных практических приложений нового метода является получение дешёвых препаратов белков, имеющих значение в медицине (инсулин, интерферон) и сельском хозяйстве (дешёвые белковые корма для скота). Этот период характеризуется важными открытиями в области медицинской вирусологии. В фокусе изучения — три наиболее массовых болезни, наносящих огромный ущерб здоровью людей, — грипп, рак, гепатит.
Установлены причины регулярно повторяющихся пандемий гриппа. Детально изучены вирусы рака животных (птиц, грызунов), установлена структура их генома и идентифицирован ген, ответственный за злокачественную трансформацию клеток — онкоген. Установлено, что причиной гепатитов А и В являются разные вирусы: гепатит А вызывает РНК-содержащий вирус, отнесённый к семейству пикорнавирусов, а гепатит В — ДНК-содержащий вирус, отнесенный к семейству гепаднавирусов. Б. Бламберг, исследуя антигены крови у аборигенов Австралии, обнаружил так называемый австралийский антиген, который он принял за один из антигенов крови. Позже было выявлено, что этот антиген является антигеном гепатита В, носительство которого распространено во всех странах мира. За открытие австралийского антигена Б. Бламбергу в 1976 г. была присуждена Нобелевская премия. Б. Бламберг разделил Нобелевскую премию с другим американским учёным К. Гайдушеком, который установил вирусную этиологию, одной из медленных инфекций человека — куру, наблюдающейся в одном из туземных племён на острове Новая Гвинея и связанной с ритуальным обрядом — поеданием зараженного мозга умерших родственников. Благодаря усилиям К. Гайдушека, поселившегося на острове Новая Гвинея, эта традиция была искоренена и число больных резко сократилось.
Природа вирусов
Вирусы обладают уникальными свойствами, которые позволяют выделить их из общей массы микроорганизмов:
- Наличие только одного из двух видов нуклеиновых кислот.
- Отсутствие собственной белок-синтезируемых систем.
- Они представляют собой генетических паразитов.
- Вирусы не растут, а только репродуцируются (размножаются).
Разделы вирусологии
Общая вирусология изучает основные принципы строения, размножения вирусов, их взаимодействие с клеткой-хозяином, происхождение и распространение вирусов в природе. Один из важнейших разделов общей вирусологии — молекулярная вирусология, изучающая структуру и функции вирусных нуклеиновых кислот, механизмы экспрессии вирусных генов, природу устойчивости организмов к вирусным заболеваниям, молекулярную эволюцию вирусов.
Частная вирусология исследует особенности определенных групп вирусов человека, животных и растений и разрабатывает меры борьбы с вызываемыми этими вирусами болезнями.
В 1962 г. вирусологи многих стран собрались на симпозиуме в США, чтобы подвести первые итоги развития молекулярной вирусологии. На этом симпозиуме звучали не совсем привычные для вирусологов термины: архитектура вирионов, нуклеокапсиды, капсомеры. Начался новый период в развитии вирусологии — период молекулярной вирусологии.
Молекулярная вирусология, или молекулярная биология вирусов, — составная часть общей молекулярной биологии и в то же время — раздел вирусологии. Это и неудивительно. Вирусы — наиболее простые формы жизни, и поэтому вполне естественно, что они стали и объектами изучения, и орудиями молекулярной биологии. На их примере можно изучать фундаментальные основы жизни и ее проявления.
С конца 50-х годов, когда начала формироваться синтетическая область знаний, лежащая на границе неживого и живого и занимающаяся изучением живого, методы молекулярной биологии хлынули обильным потоком в вирусологию. Эти методы, основанные на биофизике и биохимии живого, позволили в короткие сроки изучить строение, химический состав и репродукцию вирусов.
Поскольку вирусы относятся к сверхмалым объектам для их изучения нужны сверхчувствительные методы С помощью электронного микроскопа удалось увидеть отдельные вирусные частицы, но определить их химический состав можно только, собрав воедино триллионы таких частиц. Для этого были разработаны методы ультрацентрифугирования. Современные ультрацентрифуги — это сложноустроенные приборы, главной частью которых являются роторы, вращающиеся со скоростью в десятки тысяч оборотов в секунду.
Здесь нет надобности рассказывать о других методах молекулярной вирусологии, тем более что они меняются и совершенствуются из года в год быстрыми темпами Если в 60-х годах основное внимание вирусологов было фиксировано на характеристике вирусных нуклеиновых кислот и белков, то к началу 80-х годов была расшифрована полная структура многих вирусных генов и геномов и установлена не только аминокислотная последовательность, но и третичная пространственная структура таких сложных белков, как гликопротеид гемагглютинина вируса гриппа. В настоящее время можно не только связать изменения антигенных детерминант вируса гриппа с заменой в них аминокислот, но и рассчитывать прошедшие, настоящие и будущие изменения этих антигенов.
С 1974 г. начала бурно развиваться новая отрасль биотехнологии и новый раздел молекулярной биологии — генная, или генетическая, инженерия. Она немедленно была поставлена на службу вирусологии.
Семейства, включающие вирусы человека и животных
- Семейство: Poxviridae (поксвирусы)
- Семейство: Iridoviridae (иридовирусы)
- Семейство: Herpesviridae (вирусы герпеса)
- Семейство: Aflenoviridae (аденовирусы)
- Семейство: Papovaviridae (паповавирусы)
- Предполагаемое семейство: Hepadnaviridae (вирусы, подобные вирусу гепатита В)
- Семейство: Parvoviridae (парвовирусы)
- Семейство: Reoviridae (реовирусы)
- Предполагаемое семейство: [Birnaviridae] (вирусы с двухцепочечной РНК, состоящей из двух сегментов)
- Семейство: Togaviridae (тогавирусы)
- Семейство: Coronaviridae (коронавирусы)
- Семейство: Paramyxoviridae (парамиксовирусы)
- Семейство: Rhabdoviridae (рабдовирусы)
- Предполагаемое семейства: (Filoviridae) (вирусы Марбург и Эбола)
- Семейство: Orthomyxoviridae (вирусы гриппа)
- Семейство: Bunyaviridae (буиьявирусы)
- Семейство: Arenaviridae (аренавирусы)
- Семейство: Retroviridae (ретровирусы)
- Семейство: Picornaviridae (пикорнавирусы)
- Семейство: Caliciviridae (калицивирусы)
Литература
- Белоусова Р.В., Преображенская Э.А., Третьякова И.В. Ветеринарная вирусология. — КолосС, 2007. — 448 с. — ISBN 978-5-9532-0416-3
- Букринская А.Г. Вирусология. — М.: Медицина, 1986. — 336 с.
- Вирусология: В 3-х т. Т. 1: Пер. с англ. / Под ред. Б. Филдса, Д. Найпа, при участии Р. Ченока, Б. Ройзмана, Дж. Мелника, Р. Шоупа. — М.: Мир, 1989. — 492 с. — ISBN 5-03-000283-9
- Вирусология: В 3-х т. Т. 2: Пер. с англ. / Под ред. Б. Филдса, Д. Найпа, при участии Р. Ченока, Б. Ройзмана, Дж. Мелника, Р. Шоупа. — М.: Мир, 1989. — 496 с. — ISBN 5-03-000284-7
- Вирусология: В 3-х т. Т. 3: Пер. с англ. / Под ред. Б. Филдса, Д. Найпа, при участии Р. Ченока, Б. Ройзмана, Дж. Мелника, Р. Шоупа. — М.: Мир, 1989. — 452 с. — ISBN 5-03-000285-5
См. также
Шаблон:Virusology-stub Шаблон:Разделы микробиологии Шаблон:Разделы биологии
ar:علم الفيروسات bg:Вирусология ca:Virologia co:Virologia cs:Virologie de:Virologie en:Virology eo:Virusscienco es:Virología et:Viroloogia fr:Virologie gl:Viroloxía hi:विषाणु विज्ञान hr:Virologija id:Virologi io:Virologio is:Veirufræði it:Virologia ja:ウイルス学 ka:ვირუსოლოგია kk:Вирусология ko:바이러스학 la:Virologia lt:Virusologija lv:Virusoloģija ms:Virologi nl:Virologie nn:Virologi no:Virologi oc:Virologia pl:Wirusologia pt:Virologia ro:Virusologie si:වෛරස විද්යාව simple:Virology sk:Virológia sq:Viriologjia sv:Virologi th:วิทยาไวรัส tl:Birolohiya tr:Viroloji uk:Вірусологія yi:וויראלאגיע zh:病毒学